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ABSTRACT Locating the native structure of a given pro-
tein is a task made difficult by the complexity of the potential
energy hypersurface and by the huge number of local minima
it contains. We have explored a strategy (the ‘‘antlion’’
method) for hypersurface modification that suppresses all
minima but that of the native structure. Transferrable penalty
functions with general applicability for modifying a hypersur-
face to retain the desired minimum are identified, and two
blocked oligopeptides (alanine dipeptide and tetrapeptide) are
used for specific numerical illustration of the dramatic simpli-
fication that ensues. In addition, an intermediary role for
neural networks to manage some aspects of the antlion strategy
applied to large polypeptides and proteins is introduced.

Section 1. Introduction

The protein folding problem is one of the most significant and
intriguing challenges in molecular biophysics (1-3). The
native forms that have been determined for naturally occur-
ring proteins display a fascinating variety of three-
dimensional structures exquisitely tailored to biological func-
tion. In addition, the experimentally observed folding kinet-
ics of naturally occurring proteins involves time scales on the
orders of microseconds to minutes, rather than the millennia
expected for random-walk searches among conformational
alternatives (4). General principles by which any linear
sequence of amino acid residues encodes information about
the native structure, and the most efficient kinetic pathway to
this structure, still remain largely out of reach. The present
paper is devoted to the exploration of a strategy that, we
hope, will eventually illuminate these general principles.
From the theoretical viewpoint, the protein folding prob-
lem comprises three components. The first involves speci-
fying the free energy (potential of mean force) hypersurface
for arbitrary configurations of a given polypeptide immersed
in the solvent of interest. The second concerns the ‘kinetic
pathway by which any non-native structure (in particular that
of the newly synthesized protein emerging from the ribo-
some) manages to attain the native structure. The third
amounts to nonlinear optimization on the free energy hyper-
surface to identify the native structure and any feasible
alternative folding structures (low-lying relative free energy
minima) and to show how they are determined by the amino
acid sequence and solvent. In relation to this final point, we
note that there is some question as to whether the native
structure is always the global free energy minimum (5, 6) or
a very long-lived metastable state (7). For the present we
concentrate on the last of these three components, assuming
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that at least an approximation to the relevant free energy
hypersurface is available.

Chemically realistic approximations to the conformational
behavior of polypeptides inevitably entail hypersurfaces with
enormous complexity. It is generally believed that ), the
number of distinct local minima, rises approximately expo-
nentially with N, the number of residues:

In Q= aN. [1.1]
A rough range of N for naturally occurring proteins is 100 to
1000, while a probably lies in the range of 1 to 10. Searching
for the native structure among such a large number of
candidates is daunting to say the least.

Theoretical and computational strategies for solving the
native protein minimization problem have been quite varied.
Some examples include brute force minimization (8), statis-
tical mechanical models ranging from that of Zimm and Bragg
(9) to Monte Carlo simulations. of highly simplified lattice
models (10), and the application of neural network concepts
to prediction of protein secondary structure (11-14) and
tertiary structure (15-18). The adaptation of spin-glass theory
to associative memory Hamiltonians for proteins (15-17) and
explicit neural network training on distance matrices (18)
offer promise for overcoming the deficiencies of traditional
neural network implementations (11-14), where only a max-
imum of ~67% reliability has been achieved for prediction of
secondary structure.

This paper reports results of an exploratory investigation
that was undertaken to determine the applicability of a
general optimization strategy to the protein folding problem,
the so-called ‘““‘antlion’’ method (19, 20). This approach relies
on the ability to deform the objective function hypersurface
in such a way that the basin surrounding the global minimum
(or a metastable minimum) widens and dominates. It takes its
name from the family of subterranean insects that lie in wait
at the bottom of victim-entrapping basins. In the present
context it is the job of the antlion method to replace the
complicated protein hypersurface by one for which @ = 0 in
Eq. 1.1. Any elementary minimization routine such as steep-
est descent on the modified hypersurface would then auto-
matically converge to the single remaining minimum type,
which by construction should be identical to the global (or
even a preselected metastable) minimum of the starting
problem, or at least a close approximation thereto. The final
step in the antlion method is to optimize on the undeformed
hypersurface, using the converged structure derived from the
simplified potential energy surface as an initial guess. We
note that this same strategy is possible for classes of minima,
where the complexity of the hypersurface is reduced to 0 <
a << 1. Stillinger (21) and Piela et al. (22) have proposed the
use of a diffusion equation method for deforming hypersur-
faces to retain only the global minimum. The antlion method
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differs from the diffusion equation method in several re-
spects; the most important difference is that the diffusion
equation method has been explicitly demonstrated on one-
and two-dimensional model systems only (22), whereas the
antlion method presented here is applicable to an arbitrarily
large number of dimensions of biological interest (23).

To create a generally useful antlion strategy, at least part
of the hypersurface modification algorithm must contain
mathematical operations that are transferable between dif-
ferent polypeptides, and in particular from oligomers to
higher molecular weight polypeptides. The success of trans-
ferability may ultimately allow insight into the nature of the
pathways by which a random coil accesses the correct
tertiary-structure minimum, in addition to identifying
whether a protein is Kinetically or thermodynamically stabi-
lized. In this spirit we have focused considerable attention on
the blocked alanine dipeptide (Fig. 1) and alanine tetrapeptide
(Fig. 2). As discussed in more detail below, we foresee
ultimately employing a neural network automation procedure
to manage some aspects of the antlion modification.

Section 2 presents the details of the objective potential
function for both alanine dipeptide and alanine tetrapeptide,
as well as the specific algorithms for searching conformation
space for minima. Section 3 reports energies and structures
for the alanine dipeptide minima, identifies some transterable
modifications of the original potential energy, and shows how
the resulting modified potential is drastically simplified to one
surviving minimum. In the same section, we extend these
considerations to the alanine tetrapeptide, again demonstrat-
ing the capacity for dramatic simplification to a single min-
imum hypersurface. Section 4 summarizes our results and
outlines our best projection for future development of the
antlion approach.

Section 2. Methods and Models

Potential Function. A reasonable approximation to the
hypersurface of an arbitrary polypeptide is the following
well-established empirical potential energy function:

bonds angles
Vo= 2 kilbi—bi)* + 20 koi(6; — 60)°
1]

l

improper torsions

+ 2 k(= T+ 2 koill + cos(niw; + ;)]
]

MM , ,
+ Z‘«qE {C qigj/rij + el (Rij/rip)** — 2(Ryj/ri)®.  [2.1]

The first four terms provide the connectivity potential; the
bond length, bond angle, and improper torsion deformations
are represented as harmonic potential functions with force
constants k;, kg, and k, and equilibrium values &, 6,, and 7,
respectively. The torsional potential is represented as a
Fourier cosine expansion, where k,, is the force constant, 8
is the phase, and n is a multiplicity factor that allows for
inclusion of higher harmonics. While the chirality of the
a-carbon center of all amino acids except glycine dictates the
use of a general Fourier series, the cosine series will be
adequate for the current study. The empirical parameters
used and the specific torsions evaluated (only one dihedral
term is evaluated for rotation around a given bond) for both
alanine dipeptide and alanine tetrapeptide are presented in
Table 1 (24).

The remaining terms in Eq. 2.1 are nonbonded interac-
tions, which are modeled as pairwise coulomb electrostatic
and Lennard-Jones interactions. The i, j sums are restricted
to pairs of atoms separated by three or more intervening
bonds between the pair. The Lennard-Jones interaction
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F1G. 1. Structure of the global-minimum conformer for the
blocked alanine dipeptide.

parameters are evaluated using simple mixing rules of the
individual atomic parameters:

_ 1/2
e = (eqey)"

In addition, the electrostatic interactions are scaled by a
factor C = 0.5 when the pair under consideration are sepa-
rated by exactly three bonds; otherwise C = 1.0. In Table 2
we list the Lennard-Jones parameters (24) used for both
alanine dipeptide and alanine tetrapeptide. In Table 3 we
provide the charges for alanine dipeptide (24), which differ
slightly from the charges for alanine tetrapeptide in the same
table, in order to ensure that charge neutrality is maintained.
The set of the connectivity and nonbonded parameters in
Tables 1-3 for the di- and tetrapeptide will henceforth be
referred to as yielding the unmodified interaction, V,. A
description of the corresponding sets for the modified inter-
actions is left to Sections 3 and 4.

Characterization of Minima. Given an objective function
such as that in Eq. 2.1, we require a method for obtaining a
majority, or if possible all, of the minima on the hypersurface
it represents. For simplicity we employ a Monte Carlo

-
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FiG. 2. Structure of the global-minimum conformer for the
blocked alanine tetrapeptide.
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Table 1. Parameters of the intramolecular potential energy
function for the alanine dipeptide and tetrapeptide
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Table 3. Parameters of the electrostatic function for the alanine
dipeptide and tetrapeptide

Force constant Equilibrium value

Bond type ky, kcal/(mol-A?) bo, A
CT-HA 340.0 1.090
CT-C 279.0 1.515
C-0 640.0 1.225
C-N 350.0 1.335
N-H 465.0 1.000
N-CT 310.0 1.460
CT-CT 268.0 1.515

Angle type ke, kcal/(mol-rad?) 6o, deg
CT-C-O 66.0 122.6
CT-C-N 64.0 113.9
HA-CT-HA 37.0 109.8
HA-CT-C 45.0 109.5
C-N-H 32.0 120.9
C-N-CT 44.0 117.6
O-C-N 98.0 125.0
N-CT-HA 46.5 109.2
N-CT-CT 76.0 111.0
N-CT-C 58.0 112.8
H-N-CT 23.0 120.8
CT-CT-HA 37.5 109.5
Improper type k., kcal/(mol-rad?) 70, deg
C-CT-N-O 125.0 0.0
N-C-CT-H 28.0 0.0
Dihedral type k¢, kcal/mol 5, deg (n)
CT-C-N-CT 9.5 180 (2)
HA-CT-C-N 2.2 03
HA-CT-N-C 0.3 0Q3)
N-CT-C-N 0.7 180 (2)
N-CT-CT-HA 1.6 0@3)

CT corresponds to C,, Cg, CTR, and CTL. HA corresponds to H,,
Hg, HTR, and HTL.

heating and quenching protocol, and subsequent minimiza-
tion, to search exhaustively for minima of V; and of all of the
modified functions discussed below. In some cases we use a
minimization procedure with starting structures expected to
be near stable stationary points.

The heating phase of any given Monte Carlo run consists of
specifying an initial configuration of the atoms of alanine
dipeptide or alanine tetrapeptide and generating configurations
at a temperature of 20,000 K by using the Metropolis algorithm
(25). A step size in Cartesian space of +=0.125 A for every atom
at every step results in a 50% acceptance rate for the 500,000-
step run. Configurations are sampled every 10,000 steps,
resulting in 50 configurations, which are used as starting
structures for the quenching portion of the Monte Carlo
search.

Table 2. Parameters of the Lennard-Jones function for the
alanine dipeptide and tetrapeptide

Atom type &4, kcal/mol R, A
HTL/HTR 0.0450 1.468
CTL/CTR 0.0903 1.800
C 0.1410 1.870
(0] 0.2000 1.560
N 0.0900 1.830
H 0.0498 0.800
H, 0.0450 1.468
Cq. 0.0903 1.800
Cg 0.0903 1.800
Hp 0.0450 1.468

gii, €
Atom type Dipeptide Tetrapeptide
HTL/HTR 0.0000 0.0000
CTL/CTR 0.0000 0.0000
C 0.5500 0.5500
(o) —0.5500 —0.5500
N —0.3500 —0.3500
H 0.2500 0.2500
H, 0.1000 0.1000
Cq 0.0000 0.0000
Cg —0.2600 -0.2917
Hg 0.1200 0.1083

The Monte Carlo quenching stage consists of generating
configurations at 10 K using a step size of 0.0005 A, again
resulting in an acceptance rate of 50% for Metropolis sam-
pling. The Monte Carlo quench is terminated after 30,000
steps, and a BFGS minimization algorithm (26) is then used
to determine the closest stationary point.

Section 3. Hypersurface Modification for Alanine
Oligopeptides

Alanine Dipeptide. We provide an enumeration in Table 4
of all L minima found by the Monte Carlo/minimization
protocol outlined in Section 2; we note that we have also
found most of the mirror images (D form) of the entries in
Table 4. A large majority of the minima correspond to
structures where a cis—trans isomerization of one or both
peptide groups has occurred. The remaining four minima not
represented in the preceding class are those which are found
by a search through the two-dimensional space defined by the
internal coordinate torsions ¢ (C-N-C,-C) and s (N-C,-C-N).
Fig. 3 displays an energy contour map showing these four
energy minima, which is generated by constraining ¢ and ¢
and allowing relaxation of the remaining degrees of freedom
(27). The lowest-energy structure of the {0 = 35 minima
corresponds to the C7q all-trans L conformer (Fig. 1), which
may be described as a seven-membered ring closed by an
intramolecular hydrogen bond, with the side-chain methyl
group equatorial to the plane of the ring.

Table 4. Enumeration of the alanine dipeptide minima

b, deg Y, deg w1 w7 E, kcal/mol
-78.1 72.5 trans trans —-32.391
163.7 -163.9 trans trans -30.997

-163.3 149.9 trans cis -30.766

71.6 —65.9 trans trans —30.339
74.8 —143.2 ' trans cis —29.630

-157.9 78.3 trans cis —28.430

—169.7 -55.3 trans trans —26.258
—53.8 —50.5 trans cis —26.215

70.1 24.2 cis trans —26.037
-72.8 145.2 cis cis —25.995
65.4 36.6 trans cis —25.870
152.3 —148.6 cis cis —25.716

—166.7 —-42.3 trans cis —25.284

152.5 -160.7 cis trans —24.841
71.6 -156.7 cis trans —24.833

—68.1 —39.8 cis cis —-24.170

—49.5 —48.8 cis trans —23.615
76.0 167.3 trans cis —23.375
53.2 -131.6 cis trans -20.799
68.4 —178.8 cis trans —20.744
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F1G. 3. The ¢, ¢ surface derived from the unmodified Hamilto-
nian, Vy (Eq. 2.1) for alanine dipeptide. The ¢ and ¢ variables are held
fixed at each grid point (10° spacing), and all other degrees of freedom
are relaxed. The dashed lines denote contours of 0.5 kcal/mol and
extend from the zero of energy (the C7.4 conformer) to 7.0 kcal/mol.
Solid contours are drawn every 1.0 kcal/mol thereafter.

The first type of modification of V| is to eliminate all
minima where one or both peptide groups are in the cis
conformation (where exceptions are to be made if the residue
is a proline) (1). We note that the peptide torsion potential
used in Eq. 2.1 is specifically

V =9.5[1+ cosRw + )], [3.1]

which favors minima at both w = 0 and w = #. The obvious
modification of Eq. 3.1 to favor the trans form is to change
the multiplicity factor of 2 to 1, and to change the phase from
mto 0. To maintain the correct curvature at the minimum, we
use a force constant of 38 kcal/mol, so that

V' =38.0[1 + cos(w)]. [3.2]

In addition, we will always desire the L configuration of a
polypeptide sequence. To maintain the desired chirality, we
incorporate an improper dihedral funetion,

V" =125.0(1 — )%, [3.3]

for the torsions C,-N-C-Cg (1o = 33.0°) and C,-N-C-H,, (7 =
—33°). While the V' and V" modifications are trivial and in
some sense physically unimportant in relevant areas of
configuration space for biological molecules of interest, this
serves as an illustrative example for what is to follow. For the
case of alanine dipeptide, this modification permits us to
visualize transforming the energy surface in Fig. 3 to retain
only the C7.q conformer.

We have considered a number of modifications to the
potential energy function representing the surface in Fig. 3 in
order to retain only the global energy minimum. Our criteria
for a successful modification are (i) that the penalty function
explicitly or implicitly incorporate information about the
tertiary structure of any peptide, (i) that the functional form
of the modification is transférable across any polypeptide
sequence, and (iii) that a variety of conformations can be
distinguished in a given segment of polypeptide ranging from
the random coil to secondary structure conformers such as
the a-helix and B-sheet.

The generic penalty function

V" = k¢[1 _ COS(¢ - ¢0)] + kw[l - COS((I’ - d’O)] [3.4]
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fulfills the above objectives. For the case of polypeptides
with minimal side chains such as glycine or alanine, the ¢, ¢
variables most directly define the tertiary structure; for
polypeptides with more complex side chains, the same type
of penalty function can be applied to the y; dihedrals as well,
so that the functional form is transferable to any sequence of
amino acid residues. Finally, for appropriately defined ¢ and
Yo parameters, it allows discrimination among the pool of
relevant conformers observed in large polypeptides and
proteins. This function (using the parameters defined in Table
5) indeed accomplishes the simplification of the surface in
Fig. 3 to a single minimum: the global, C7,q minimum as
exhibited in Fig. 4.

Transferability to Alanine Tetrapeptide. The number of
unique minima for the alanine tetrapeptide case is quite large,
even when cis peptides and D isomers are eliminated from
consideration. However, the alanine tetrapeptide system
offers some simplification for classifying these minima when
one considers the conformational space of the tetrapeptide to
comprise three sets of ¢, ¢ dihedrals. The alanine tetrapep-
tide shows the following minima in any given ¢;, ¢; space:
CTeq, CTax, C5, ', ag, ar, and polyglycine II, and several
‘“‘unusual’’ minima that occur infrequently relative to the
preceding seven. Thus a large majority of minima fall into a
classification where the three sets of ¢, ¢ variables can adopt
any combination of the seven conformers C7¢q (—75°, 75°),
CT.x (75°, =75°, C5 (—165°, 165°), a' (—165°, —55°), ar
(—60°, —45°), ay (60°, 60°), and polyglycine II (—80°, 150°).
Enumeration of these possibilities indicates that the number
of unique minima is approximately

Q=7+ M, [3.5]

where M is the small number of minima that do not fall into
the above seven conformer classification (M = 25 in our
search). In the case of stable minima for all possible combi-
nations of the seven conformers (343), {} = 368 or a =
(again, ignoring the possibility of cis and b conformers). We
note that our search found most (but not all) of the 7> = 343
simple possibilities, which can be attributed both to a lack of
stability of a particular combination (ag, a1, ar, for example)
and to the likelihood of incomplete sampling.

With these Monte Carlo results in hand for the unmodified
tetrapeptide hypersurface, we then tested the transferability
of the modification functions in Eqs. 3.2-3.4. As before, the
intention was to produce a modified potential surface pos-
sessing only a single minimum that correspondg closely to a
preselected minimum of the complicated starting hypersur-
face. We have successfully achieved this goal in a manner
that demonstrates considerable latitude in the character of
the single minimum that is permitted to survive modification.
Specifically, successful use of the transferable functions
(with appropriate ¢y, ¢ choices) has been demonstrated in
the following independent cases: (i) retention of the global
minimum, [C7.q, C7,, polyglycine II], (ii) retention of a
preselected metastable minimum, [ar, agr, agl, and (iii)
retention of any one of the class of minima [C7.q, C7ax, *]
where * denotes a ‘‘wild card’’ specification for the third ¢,
¢ pair (we have found this third ¢, ¢ pair on the unmodified
surface to be either polyglycine II, ag, C7cq, or C7,y).

Table 5. Parameters for the alanine dipeptide potential, V"
ks, ky, kcal/mol o, Yo, deg n

C-N-C,-C 7.5 -75.0 1
N-C,-C-N 7.5 75.0 1

Dihedral type
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Fi1G. 4. The ¢, ¢ surface derived from the modified Hamiltonian
(Eq. 3.1-3.4) for alanine dipeptide. The ¢ and ¢ variables are held
fixed at each grid point (10° spacing), and all other degrees of freedom
are relaxed. The dashed lines denote contours of 2.0 kcal/mol and
extend from the zero of energy (the C7.q conformer) to 8.0 kcal/mol.
Solid contours are drawn every 3.0 kcal/mol thereafter.

Section 4. Discussion and Conclusions

We have implemented a strategy for greatly simplifying
peptide energy hypersurfaces in order to retain only one
conformationally distinct minimum. To the extent that the
surviving minimum corresponds closely to the desired min-
imum, the original conformational optimization problem un-
dergoes drastic simplification. This approach has been illus-
trated by specific calculation for two small peptides, the
blocked alanine dipeptide and tetrapeptide. For the former,
20 local minima (40, with mirror-image configurations) col-
lapse to a single minimum upon application of suitable
potential energy penalty functions. The functional forms of
these penalty functions are immediately transferable to the
tetrapeptide case (or indeed to larger polypeptides) and
succeed in suppressing a much larger number of local minima
on the starting hypersurface to favor, once again, a single
surviving minimum. For both the dipeptide and the tetrapep-
tide, we have been able to arrange for the surviving minimum
to closely approximate the desired minimum of the original
surface, thereby simplifying the corresponding conforma-
tional search problem. These examples illustrate the promise
for the extension of the antlion method to larger polypeptides
and proteins, where determining the native structure from
among the vast number of minima on the unmodified hyper-
surface is an intractable proposition, and therefore represents
the case where simplification is highly desirable.

In the general context of protein conformational predic-
tion, implementation of the antlion approach might at first
glance seem to require at the outset knowledge of the
secondary and tertiary structure sought. In particular, it
would seem that sets of angles ¢, Y have to be identified to
construct the necessary penalty functions; the ¢, and i
values used for short peptides would not necessarily transfer
to longer peptides (28, 29). We foresee a fundamental role for
neural networks (trained on a suitable protein database) to
manage this aspect of the multidimensional optimization
problem. However we hasten to stress that an important
distinction exists between this intended role and that con-
ventionally required of neural networks in the protein folding
area. For the latter, the outputs of the network are the direct
structure predictions, whether they concern secondary struc-
ture predictions (11-14) or residue contact-distance classifi-
cation (18). The antlion method, however, would require only
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network predictions for the ¢, Y, penalty parameters (and
perhaps the corresponding force constants); subsequent min-
imization first on the modified potential hypersurface and
then on the unmodified hypersurface serves as the tertiary
predictor. Local violations of the neural network angle pre-
dictions become feasible, even likely, as the entire system
seeks and finds its optimal final structure. In this respect our
approach accommodates the presence of locally frustrated
interactions in the interests of attaining a global minimum
tertiary structure. It is the frequent occurrence of such
intrinsic frustrated interactions that, in our view, has thus far
limited the success rate of neural networks as direct predic-
tors of secondary structure in proteins.

In summary, the simple-peptide-system results obtained
thus far provide strong encouragement that the antlion strat-
egy can be adapted to larger peptides and proteins. Indeed,
we have been able to apply the antlion/neural network
strategy, outlined in this section, successfully to the naturally
occurring 26-residue polypeptide mellitin; details will be
presented elsewhere (23).
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